Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cogn Neurosci ; 60: 101237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37031512

RESUMO

This study examined the role of male pubertal maturation on physical growth and development of neurocircuits that regulate stress, emotional and cognitive control using a translational nonhuman primate model. We collected longitudinal data from male macaques between pre- and peri-puberty, including measures of physical growth, pubertal maturation (testicular volume, blood testosterone -T- concentrations) and brain structural and resting-state functional MRI scans to examine developmental changes in amygdala (AMY), hippocampus (HIPPO), prefrontal cortex (PFC), as well as functional connectivity (FC) between those regions. Physical growth and pubertal measures increased from pre- to peri-puberty. The indexes of pubertal maturation -testicular size and T- were correlated at peri-puberty, but not at pre-puberty (23 months). Our findings also showed ICV, AMY, HIPPO and total PFC volumetric growth, but with region-specific changes in PFC. Surprisingly, FC in these neural circuits only showed developmental changes from pre- to peri-puberty for HIPPO-orbitofrontal FC. Finally, testicular size was a better predictor of brain structural maturation than T levels -suggesting gonadal hormones-independent mechanisms-, whereas T was a strong predictor of functional connectivity development. We expect that these neural circuits will show more drastic pubertal-dependent maturation, including stronger associations with pubertal measures later, during and after male puberty.


Assuntos
Encéfalo , Maturidade Sexual , Animais , Masculino , Macaca mulatta , Maturidade Sexual/fisiologia , Estudos Longitudinais , Córtex Pré-Frontal/fisiologia
2.
Dev Cogn Neurosci ; 48: 100906, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33465553

RESUMO

This study mapped the developmental trajectories of cortical regions in comparison to overall brain growth in typically developing, socially-housed infant macaques. Volumetric changes of cortical brain regions were examined longitudinally between 2-24 weeks of age (equivalent to the first 2 years in humans) in 21 male rhesus macaques. Growth of the prefrontal, frontal, parietal, occipital, and temporal cortices (visual and auditory) was examined using MRI and age-specific infant macaque brain atlases developed by our group. Results indicate that cortical volumetric development follows a cubic growth curve, but maturational timelines and growth rates are region-specific. Total intracranial volume (ICV) increased significantly during the first 5 months of life, leveling off thereafter. Prefrontal and temporal visual cortices showed fast volume increases during the first 16 weeks, followed by a plateau, and significant growth again between 20-24 weeks. Volume of the frontal and temporal auditory cortices increased substantially between 2-24 weeks. The parietal cortex showed a significant volume increase during the first 4 months, whereas the volume of the occipital lobe increased between 2-12 weeks and plateaued thereafter. These developmental trajectories show similarities to cortical growth in human infants, providing foundational information necessary to build nonhuman primate (NHP) models of human neurodevelopmental disorders.


Assuntos
Córtex Cerebral , Animais , Mapeamento Encefálico , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...